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ABSTRACT

The problem of calculating expected component life under fatigue loading condi-

tions is complicated by the fact that component loading histories contain, in

many cases, cyclic loads of widely varying amplitudes. In such a case one

requires a cumulative damage model, in addition to a fatigue damage criterion,

or life relationship, in order to compute the expected fatigue life. The tra-

ditional cumulative damage model used in design is the linear damage rule.

This model, while being simple to use, can yield grossly unconservative results

under certain loading conditions. Research at the NASA Lewis Research Center

has led to the development of a nonlinear cumulative damage model, named the

double damage curve approach (DDCA), that has greatly improved predictive capa-

bility. This model, which considers the life (or loading) level dependence of

damage evolution, has been applied successfully to two polycrystalline materi-

als, 316 stainless steel and Haynes 188. The cumulative fatigue behavior of

the PWA 1480 single-crystal material is currently being measured to determine

the applicability of the DDCA for this material.
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OVERV I EW 

MISSION HISTORY PRODUCES COMPLEX COMPONENT LOADING HISTORIES 

Mission profiles derived from aircraft gas turbine engine usage resolve into 
complex thermal and mechanical loading histories on many hot-section compo- 
nents. Components whose useful life is limited by such loadings experience 
creep and fatigue in varying and interacting degrees, both within a cycle and 
over the service life. A typical component is a hot-section turbine blade. 
The figure shows the strain history resulting from thermal and mechanical load- 
ing induced by the mission history. 
the life-limiting, or critical, location of the turbine blade. 

The strain history is that experienced at 
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A MORE ACCURATE CUMULATIVE FATIGUE DAMAGE RULE

When considering the life of components subjected to complex fatigue loading

histories in the interest of predicting the useful component life as limited

by fatigue, it is common practice to employ a fatigue crack initiation life

relationship in conjunction with a cumulative damage model. Traditionally the

cumulative damage model used is the linear damage rule. Although using this

rule greatly simplifies life prediction calculations, it can lead to unconser-

vative results under certain loading conditions. Research at NASA Lewis has

led to the development of a nonlinear cumulative damage model that greatly

increases the accuracy of such calculations. Named the double damage curve

approach (DDCA), this new model considers the life (or loading) level depend-

ence of fatigue damage evolution. In certain cases the predictions resulting

from using the DDCA are nearly an order of magnitude more accurate than those

made under the linear damage rule. Example applications are given below.
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MISSION HISTORY PRODUCES COMPLEX COMPONENT LOADING HISTORIES 

Mission profiles derived from aircraft gas turbine engine usage resolve into 
complex thermal and mechanical loading histories on many hot-section compo- 
nents. Components whose useful life is limited by such loadings experience 
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LINEAR DAMAGE RULE

When considering the life of components subjected to complex fatigue loading

histories in the interest of predicting the useful component life as limited

by fatigue, it is common practice to employ a fatigue crack initiation life

relationship in conjunction with a cumulative damage model. Traditionally the

cumulative damage model used is the linear damage rule (Miner, 1945). This

rule considers the evolution of fatigue damage to be independent of the life

(or loading) level. This implies that all life levels share the same fatigue

damage evolution curve, regardless of the shape of this curve. Although this

assumption greatly simplifies life prediction calculations, in certain cases
it can lead to unconservative results. An example of this is high-amplitude

straining (low-cycle fatiguing) followed by low-amplitude straining (high-

cycle fatiguing). The life predicted by the linear damage rule for this case
can be in error from that observed in experiment by as much as nearly an order

of magnitude, depending on the relative life levels involved (Manson and

Halford, 1981).
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A MOREACCURATECUMULATIVEFATIGUEDAMAGERULE

Research at NASALewis has led to the development of a nonlinear cumulative
damagemodel that greatly increases the accuracy of cumulative fatigue life
calculations. Namedthe double damagecurve approach (DDCA), this new model
considers the life (or loading) level dependenceof fatigue damageevolution
(Mansonand Halford, 1986). In this way each life level possesses an indi-

vidual damage evolution curve, the shape of which may vary to the extent that

the relationship to the other life curves is maintained. In certain cases

such as in the previous example, wherein a block of low-cycle fatigue is fol-

lowed by high-cycle fatigue to failure, the predictions resulting from the use

of the DDCA are nearly an order of magnitude more accurate than those made

under the linear damage rule. These predictions thus more realistically model

the fatigue damage interaction behavior of polycrystalline materials.
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DEVELOPMENTOFDAMAGECURVEAPPROACH

The approach taken at Lewis has been to phenomenologically model the damage
accumulation process. It is generally recognized that the major manifestation
of fatigue damageis the creation, nucleation, and growth of cracks. Although
the usual approach is to treat a single, dominant crack, the early stages of
development of such a crack are characterized by manycomplicated processes,
including dislocation agglomeration, subcell formation, multiple microcrack
formation, and the growth of these cracks to the point of linkup to form the
dominant crack. Clearly the mechanismsby which fatigue damageoccur are com-
plex, and thus an empirical formulation of the "effective crack growth" equa-
tion was developed that accounts for the effects of these processes without
specifically identifying them (Mansonand Halford, 1981). Taking the effective
crack growth as the measure of fatigue damageand applying it to the multiple
loading level case resulted in the damagecurve approach (DCA). A schematic
representation of the damageevolution described by this approach is shownin
the figure. Note that, in contrast to the linear damagerule, the dependence
of damageevolution on life (or loading) level is accounted for in the damage
curve approach.
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DEFICIENCIESOFDCAANDDLDR

The damagecurve approach provided a muchmore realistic picture of fatigue
damageaccumulation under variable amplitude loading. However, experience
with the approach in conjunction with prior work on another cumulative damage
method, the double linear damagerule (DLDR), suggested that the single-term
DCAwas perhaps overly conservative in certain cases (Mansonand Halford,
1985). This was especially evident in the two-level loading,case, wherein
low-cycle fatiguing for a certain numberof cycles is followed by high-cycle
fatiguing to failure. In this case the DCApredicts a substantial reduction
in remaining high-cycle-fatigue capability for small amounts of low-cycle
fatigue. In contrast, the double linear damagerule, a method that models the
accumulation of fatigue damageby considering the process as the sumof two
linear damageaccumulation regimes, predicts a more physically realistic behav-
ior in this case. This leads to the consideration of a double-term damage
curve equation that would accurately model damageaccumulation behavior while
retaining the attractive aspects of the DCA.
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DEVELOPMENTOF DOUBLE DAMAGE CURVE APPROACH

To ameliorate this difficulty with the DCA, we developed another term, guided

by the experience provided by the double linear damage rule (DLDR). The

resulting expression was termed the double damage curve approach (DDCA) (Manson

and Halford, 1985). As the figure shows, at low values of the cycle fraction,

the DDCA followed closely the damage accumulation behavior predicted by the

DLDR, but at mid to high values of the cycle fraction it followed the DCA.

The resulting cumulative damage equation retains the attractive features of

the DCA, viz, no specialized materials tests are required and the equation is

cast in terms of the life level, so that any appropriate fatigue life expres-

sion may be used to relate the fatigue life to macroscopic variables such as

strain or stress. Note that in the DDCA (and the DCA as well) the degree of

damage interaction depends on the ratio of the life levels involved; the fur-

ther apart the respective low- and high-cycle-fatigue life levels are, the

more pronounced is the interaction.
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APPLICATIONOFDDCATO POLYCRYSTALLINEALLOYS

The DDCAhas been applied to two polycrystalline materials: 316 stainless
steel and Haynes 188, as shown in the figures (Mansonand Halford, 1985). For
the 316 stainless steel the low-cycle-fatigue portion of the tests was con-
ducted under thermomechanical conditions and the high-cycle-fatigue portion
under isothermal conditions to loosely approximate the loading experienced by
a componentin a rocket engine undergoing initial firing and subsequent opera-
tion. The nature of the thermomechanical cycle used for the low-cycle fatigue
was such that a negligibly small amount of creep was introduced, so that the
failure modewas by transcrystalline cracking (fatigue failure). The cumula-
tive damageanalysis of these experiments could therefore be madeonly on con-
siderations of fatigue damage. The tests conducted on the Haynes 188 material
were performed under isothermal conditions, with the strain rates such that
creep was precluded. In general, the predictive accuracy of the DDCAin these
two cases was quite good and represented a substantial improvement over the
linear damagerule.
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APPLICATIONOF DDCA TO SINGLE-CRYSTAL ALLOY PWA 1480

Recent cumulative damage work being carried out at Lewis concerns the cumula-

tive fatigue damage behavior of two materials of interest in space shuttle main

engine (SSME) turbopump applications: MAR-M 246 + Hf, the current bill of

materiel for SSME turbine blading, and a single-crystal superalloy, PWA 1480,

a candidate replacement material for turbopump blading. The work will identify

the cumulative damage behavior of these materials, so that the relative appli-

cability of the polycrystalline-based DDCA may be determined. Experimental

results to date have only been obtained for the slngle-crystal material, with

limited cumulative fatigue data having been generated. This material contains

significant levels of microporosity as a result of current processing tech-

niques; microporosity is generally responsible for producing failure in

fatigue. The effects of microporosity have been incorporated into the base-

line fatigue life relationship for this material (McGaw, 1987), so that the
reference life levels can be more accurately determined for the cumulative

fatigue analysis. The microporosity-compensated interaction data generated to

date are shown in the figure, with the DDCA prediction. Additional experi-

ments are being conducted to more clearly determine the cumulative fatigue

behavior of this material.
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